Stanley Meyer Understanding Vic 2020

Learn Water Fuel HHo Hydrogen.jpg

Some of the latest

Key Points of this page are on the final Vic flay core  Versions 6 + 

The information is priceless 

do your best to save all of it immediately in a word doc and upload pdfs

REMEMBER join as a Subscriber HERE and join our Patreon Here  to help advance this knowledge Page 

I think we should replicate Stan's stuff as close as possible, but in order to really understand it we'll have to do some things differently.

Something interesting-In Stan's WO patent he states primary voltage is adjusted from 0-12V. His PLL drive circuit also has the variable voltage.
Do the math and you'll see that at 1V to the primary you'll only be using 95mW of power. If you can produce gas at that power level then you've really got something.

Are you convinced one A.R. VIC can power a 10 WFC load? Or do we need more A.R.VICs. How are they connected?
What is your opinion, Russ?
According to GPSsonar, he has 20kV output of the transformer, question is, was it unloaded or with a load and from where was that signal measured?

I use the flat core and measure 250Vpp from the secondary coil, (PGen 12Vdc, 0.01A) if the diode and the chokes are added the voltage almost triples, measured at the pos and neg terminals...but still no load. If this is balanced equal but opposite voltage amplitude on a load it must do something with it...


there can't flow current...(only static voltage)... one WFC is a flatliner... two could do better...added equal cell surface areas etc. (even number)

gpssonar has taken his voltage measurement at points D & A (webmug notation). So there is no information about the voltage between D & E. I requested that information (D & E) from gps but did not get an answer.

Just out of curiosity, are people using differential probes to take these measurements?


  If not, then wherever they connect the ground lead from the scope,

they are adding a significant capacitance to the circuit,

just like a top-load on a Tesla coil.

there is a significant difference between following the rules of the scientific method (1) and layman´s work (2):

(2) throws in some inconsistent information like an appetizer or a commercial to raise interest of open minded people.
(1) gives a brief and complete description of the whole setting, creates a model and compares results against the model.

of course (1) is the only way to go if the community wants to create results not derived by chance but it needs a minimum of education and discipline and willingness to create comparable results.

otherwise activities are turning in endless circles at fluffy niveau - a situation that can be noticed for many years now ...

Take a look at this simulation:

Tip Us Please

$10  $25    $50   $100   $250  $500

Stanley A Meyer circuit scope.jpg
Stanley Meyer Example for study.png

finally got this fixed...

have a look: RARE  SAVE IT    



Coil Tests

This File is large may not open in browser or ap this is a normal thingp with out download

any issue email Dan!AqxyHUVb2_mlj_tsTuagDrq4KBg-8A?e=WsDc2T


Here is my graph of the 5 coils C-core VIC transformer using all the exact values of the air coils from 100Hz to 10kHz from Dynodon excel sheet.

This is what my impedance analyser measured with only one WFC attached with rain water in it. I did a scan from 10kHz to 30kHz.

I give you measurements of two core materials used in this transformer and you can see what is happening with the frequencies and the impedances. Remember Stan was using a lower perm core without airgap, so his frequency is much higher!!!

Now the main question is why this thing has high impedances on frequencies where the WFC capacitance can never have LC resonance between positive coil and WFC capacitance because my wfc is too high in capacitance?

And the chokes have high impedance on the same frequency.


But the resonance takes place at 14.4kHz and 16.7kHz so the cell has about 64-80pF instead of 1.1nF what I measured?